- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Romashchenko, Andrei (1)
-
Shen, Alexander (1)
-
Zimand, Marius (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This formula can be informally read as follows: the ith messagemi brings us log(1=pi) "bits of information" (whatever this means), and appears with frequency pi, so H is the expected amount of information provided by one random message (one sample of the random variable). Moreover, we can construct an optimal uniquely decodable code that requires about H (at most H + 1, to be exact) bits per message on average, and it encodes the ith message by approximately log(1=pi) bits, following the natural idea to use short codewords for frequent messages. This fits well the informal reading of the formula given above, and it is tempting to say that the ith message "contains log(1=pi) bits of information." Shannon himself succumbed to this temptation [46, p. 399] when he wrote about entropy estimates and considers Basic English and James Joyces's book "Finnegan's Wake" as two extreme examples of high and low redundancy in English texts. But, strictly speaking, one can speak only of entropies of random variables, not of their individual values, and "Finnegan's Wake" is not a random variable, just a specific string. Can we define the amount of information in individual objects?more » « less
An official website of the United States government
